CSGY - 6923
Machine Learning

Homework 2

Hasan Zubairi Masud: hzm?212 : N15065030

Contents:

8.

9.

10

11.

12.

13.

14.

15.

. Introduction
. The Data

. Loading The Data

. Checking for n/a values

. Checking Label distributions

. Checking for duplicates

. EDA Conclusion

Objective

Removing Unneeded Variables

. Making Categorical Variables numerical

Time and Dates

Scaling the Data

Splitting into training data and test data
Linear Regression

Naive Bayes

15

15

17

17

19

20

21

21

22

23

16.

17.

18.

19.

20.

21.
22.
23.
24.

25.

Decision Tree
KNN
Hw1 Conclusion

Gradient Boosted Trees

Random Forest

10-fold Cross Validation and Linear Regression
Bias and Variance in Cross Validation

Hw2 Conclusion

Future Work and What I learned

References

25

26

28

28

30

32
33
33
34

34

1. Introduction

This is an Exploratory Data Analysis (EDA) of the Motor Vehicle Collisions — Crashes data
set provided by the city of New York. To begin let us first describe exactly what an EDA is to
best explain what I wish to accomplish with this exercise.

An EDA is essentially a prescreening of a data set. This is where we analyze a data set to
see if there are any anomalies, empty entries, underlying assumptions or structures, if there
are any useless variables, understand links in the data, and more to gain the most possible
insight from the data set before performing further and deeper analysis on it.

Why is the EDA necessary? We are specifically performing the EDA before performing
Machine Learning techniques on our data set if we have many anomalies, outliers, empty
values and more that can affect our models and create classification trends that may not be
accurate. This way we make sure our data set is as useful as possible and maximizes our
eventual output.

2. The Data

The data I have chosen to analyse is the Motor Vehicle Collisions — Crashes data
set provided by the city of New York on the NYC Open Data platform. I wanted to
choose a data set to analyse so that I could possibly discover trends to aid the general
public in some way. By analysing this data set there are a few trends that may come out
that may have positive consequences. For example, if [discover there is a specific area
which happens to have a large number of accidents involving speeding, it could be worth
exploring lowering the speed limit or creating more signs and awareness in the area of the
speed limit. If there is a specific make of car that is getting into accidents more than
others it may be worth exploring whether there is a feature of that care that is leading to
accidents (of course this would have to be cross-referenced with data on the most
common cars to come to an accurate conclusion, however). If there is an area where there
are crashes constantly, maybe there is a defect in the way the road is built there. These are
just a few examples of possible trends we may be able to discover.

Further background on the data set is that the data tables contain information from
all police-reported motor vehicle collisions in NYC. The police report is required to be
filled out for collisions where someone is injured or killed, or where there is at least
$1000 worth of damage. This essentially means minor scrapes that do not total a lot of
damage or have no one injured is not included. It has data on crashes from 2012 to the
present with a current total of 1.9 million entries. There are 29 labels as well that are

listed below.

Label Name

Description Variable type
CRASH DATE Occurrence date of collision Date & Time
CRASH TIME Occurrence time of collision Plain Text
BOROUGH Borough where collision occurred Plain Text
Z1P CODE Postal code of incident occurrence Plain Text
Latitude coordinate for Global
LATITUDE Coordinate System, WGS 1984, Number
decimal degrees (EPSG 4326)
Longitude coordinate for Global
LONGITUDE Coordinate System, WGS 1984, Number
decimal degrees (EPSG 4326)
LOCATION Latitude , Longitude pair Location
ON STREET NAME Street on which the collision Plain Text
occurred
CROSS STREET NAME Nearest cross street to the collision Plain Text
OFF STREET NAME Street address if known Plain Text
NUMBER OF PERSONS .
INJURED Number of persons injured Number
NUMBER OF PERSONS .
KILLED Number of persons killed Number
NUMBER OF PEDESTRIANS Number of pedestrians injured Number

INJURED

NUMBER OF PEDESTRIANS . .
KILLED Number of pedestrians killed Number
NUMBER OF CYCLIST C
INJURED Number of cyclists injured Number
NUMBER OF CYCLIST KILLED Number of cyclists killed Number
NUMBER OF MOTORIST Number of vehicle occupants Number
INJURED injured
NUMBER OF MOTORIST Number of vehicle occupants Number
KILLED killed
CONTRIBUTING FACTOR Factors contributing to the Plain Text
VEHICLE 1 collision for designated vehicle X
CONTRIBUTING FACTOR Factors contributing to the Plain Text
VEHICLE 2 collision for designated vehicle
CONTRIBUTING FACTOR Factors contributing to the Plain Text
VEHICLE 3 collision for designated vehicle
CONTRIBUTING FACTOR Factors contributing to the Plain Text
VEHICLE 4 collision for designated vehicle
CONTRIBUTING FACTOR Factors contributing to the Plain Text
VEHICLE 5 collision for designated vehicle
Unique record code generated by
COLLISION_ID system. Primary Key for Crash Number
table.
Type of vehicle based on the
VEHICLE TYPE CODE 1 selected vehicle category (ATV, Plain Text
bicycle, car/suv, ebike, escooter,
truck/bus, motorcycle, other)
Type of vehicle based on the
VEHICLE TYPE CODE 2 selected vehicle category (ATV, Plain Text

bicycle, car/suv, ebike, escooter,
truck/bus, motorcycle, other)

Type of vehicle based on the
selected vehicle category (ATV,
bicycle, car/suv, ebike, escooter,

truck/bus, motorcycle, other)

VEHICLE TYPE CODE 3 Plain Text

Type of vehicle based on the
selected vehicle category (ATV,
bicycle, car/suv, ebike, escooter,

truck/bus, motorcycle, other)

VEHICLE TYPE CODE 4 Plain Text

Type of vehicle based on the
selected vehicle category (ATV,
bicycle, car/suv, ebike, escooter,

truck/bus, motorcycle, other)

VEHICLE TYPE CODE 5 Plain Text

3. Loading the Data

The first step is to load the data. Here I load my data set into the variable
Motor Vehicle Collisions Crashes.

= Tibrary(readr)

> Motor_vehicle_collisions_crashes <- read_csv("Motor_vehicle_collisions_-_cCrashes. csv")
Rows: 1202164 columns: 29

— cColumn specification
pelimiter: ","

chr (16): CRASH DATE, BOROUGH, LOCATIOM, OM STREET NAME, CROSS STREET MAME, OFF STREET NAME, CONTRIBUTING FACTOR VEH...
dbl (12): ZIP CODE, LATITUDE, LONGITUDE, NUMBER OF PERSONS INJURED, MUMBER OF PERSONS KILLED, NUMBER OF PEDESTRIANS ...
time (1): CRASH TIME

Next, we need to ensure that data was loaded correctly. To do this I first check the
dimensions of my data.

= dim(Motor_vehicle_Collisions_Crashes)
[1] 1902164 29

We see that the dimensions are correct, all 29 variables are present and there are 1.9
million entries as specified by the documentation on the dataset. We also need to see that all
specified variables are there.

> names (Motor_vehicle_collisions_crashes)
[1] "CRASH DATE" "CRASH TIME™ "BOROUGH™ "ZIP CODE” “LATITUDE"

[6] "LONGITUDE" "LOCATION" "ON STREET NAME" "CROSS STREET NAME™ "OFF STREET NAME"

[11] "NUMEER OF PERSONS INJURED" "NUMBER OF PERSONS KILLED" "NUMBER OF PEDESTRIANS INJURED” "NUMBER OF PEDESTRIANS KILLED" "NUMBER OF CYCLIST INJURED"
[16] "NUMBER OF CYCLIST KILLED" “NUMBER OF MOTORIST INJURED" "NUMBER OF MOTORIST KILLED" "CONTRIBUTING FACTOR VEHMICLE 1" "CONTRISUTING FACTOR VEHICLE 2"
[21] "CONTRIBUTING FACTOR VEHICLE 3" "CONTRIBUTING FACTOR VEHICLE 4" "CONTRIBUTING FACTOR VEHICLE 5" "COLLISION_ID" "VEHICLE TYPE CODE 1"

[26] "VEHICLE TYPE CODE 2" "VEHICLE TYPE CODE 3" "VEHICLE TYPE CODE 4" "VEHICLE TYPE CODE 5"

The 29 variables are all correctly named which is obviously important. As a final sanity
check, we will look at a small subset of the data to ensure everything looks fine.

> head(Motor_vehicle_collisions_crashes, 10)

"CRASH DATE ™ 'CRASH TIME BOROUGH "ZIP CODE ~ LATITUDE LONGITUDE LOCATION "ON STREET NAME ™ "CROSS STREET .0 "OFF STREET MNA. “NUMBER OF PER.." 'NUMBER OF PER.. NUMBER OF PED..
04/14/2021 05:32 NA NA NA NA A BRONX WHITESTON._. NA NA] 0
04/13/2021 21:35 BROOKLYN 11217 40.7 -74.0 (40.68358, NA NA 620 ATLAN 1 Q
04/15/2021 16:15 A NA NA NA NA HUTCHINSON RIVE.. NA NA] 0
04/13/2021 16:00 BROOKLYN 11222 NA NA NA VANDERVORT AVEN_. ANTHONY STREET NA] 0
04/12/2021 08:25 NA NA o] (0.0, 0.0) EDSON AVENUE NA NA o Q
04/13/2021 17:11 NA NA NA NA NA VERRAZANO BRIDG.. NA NA o 0
04/13/2021 17:30 QUEENS 11106 NA NA NA 33 st 3lave NA] Q
04/16/2021 23:30 NA NA NA NA NA SHORE PARKWAY NA NA o 4]
04/11/2021 17:00 NA NA NA NA NA GOWANUS RAMP NA NA 1 4]

T cooooooOROy

Everything looks correct so we can conclude the data has been adequately loaded into the
project.

4. Checking for n/a values

If there is one thing I have noticed about my data set is that there are a lot of n/a values in
certain columns. This seems this is because Police Reports do not necessarily need to report all
these 29 aspects 100% of the time. As such I want to do an analysis to see how many values in
each of my 29 labels are n/a.

> colsums(is.na(Motor_vehicle_collisions_crashes))

CRASH DATE CRASH TIME BOROUGH ZIP CODE LATITUDE
0 0 589361 589630 220626
LONGITUDE LOCATION ON STREET NAME CROSS STREET NAME OFF STREET NAME
220626 220626 393061 694673 1601518
NUMBER OF PERSONS INJURED NUMBER OF PERSONS KILLED NUMBER OF PEDESTRIANS INJURED NUMBER OF PEDESTRIANS KILLED NUMBER OF CYCLIST INJURED
18 31] 0 0
MUMBER OF CYCLIST KILLED NUMBER OF MOTORIST INJURED NUMBER OF MOTORIST KILLED CONTRIBUTING FACTOR VEHICLE 1 CONTRIBUTING FACTOR VEHICLE 2
0 0] 5667 281147
CONTRIBUTING FACTOR VEHICLE 3 CONTRIBUTIMG FACTOR VEHICLE 4 CONTRIBUTING FACTOR VEHICLE 5 COLLISION_ID VEHICLE TYPE CODE 1
1769919 1872934 1894361 0 10968

VEHICLE TYPE CODE 2 VEHICLE TYPE CODE 3 VEHICLE TYPE CODE 4 VEHICLE TYPE CODE 5

338082 17741486 1873851 1894579

Instantly we see a few clear things. The first is the labels that have data for all entries.
These are fields with a 0, indicating that there were no n/a values in the entire data set for these
labels. The labels are: Crash Date, Crash Time, Number of Pedestrians Injured, Number of
Pedestrians Killed, Number of Cyclists Injured, Number of Cyclists Killed, Number of Motorists
Injured, Number of Motorists Killed and Collision ID. Nine labels in total are those you would
most likely expect to have no n/a values. Crash Date and Crash Time are always applicable.
There are 6 labels here about categories of people who have either been injured or killed, would
rarely be n/a over simply putting 0, it is pretty clear when someone is injured or killed and police
priority to document the involved parties. The last is the Collision ID which must be generated
for each documented collision so once again not surprising to see no n/a values.

Second, there are the labels with such a small number of n/a values that it is negligible
when compared to the fact the data set has 1,902,164 total entries. These values are the number
of Persons Injured (18) and the Number of persons killed (31). I am lost for meaning on how
exactly these labels could be n/a values, as it would seem pretty clear cut for any police reports.
So let us look at some of these such entries. Let us analyse the Person’s Injured category first.
We begin by loading the column into a variable.

> NoPM <- Motor_vehicle_cCollisions_Crashes[["NUMBER OF PERSONS INJURED']]

Next, I check to find the specific entries that are n/a values.

= which(is.na(NoPM))

[1] 52586 5468ib 596191 646219 689289 703934 755234 779040 781411 788118 810052 828813 846489 873095 878297 908653 934986 1128222

Then I print out a few of these entries to see if there is anything [may be able to glean.

> print.table(print(Motor_vehicle collisions_crashes[546810, 1))

"CRASH DATE™ "CRASH TIME BOROUGH “ZIP CODE’ LATITUDE LONGITUDE LOCATION "ON STREET NAME = "CROSS STREET ..° 'OFF STREET NA. "NUMBER OF PER..’ "NUMBER OF PER.’ "NUMBER OF PED. "NUMBER OF PED.." "NUMBER OF CYC.." "NUMBER OF CYC
09/30/2018 06:30 QUEENS 11368 40.7 -73.9 (40.749. NA NA 102-21 ROOSE. NA NA 0] [} 0
CRASH DATE CRASH TIME BOROUGH ZIP CODE LATITUDE LONGITUDE LOCATION
09/30/2018 23400 QUEENS 11368 40.74977 -73.86381 (40.749767, -73.86381)
ON STREET NAME CROSS STREET NAME OFF STREET NAME NUMBER OF PERSONS INJURED NUMBER OF PERSONS KILLED NUMBER OF PEDESTRIANS INJURED NUMBER OF PEDESTRIANS KILLED
102-21 ROOSEVELT AVENUE 0 0
NUMBER OF CYCLIST INJURED NUMBER OF CYCLIST KILLED NUMBER OF MOTORIST INJURED NUMBER OF MOTORIST KILLED CONTRIBUTING FACTOR VEHICLE 1 CONTRIBUTING FACTOR VEHICLE 2 CONTRIBUTING FACTOR VEHICLE 3
0 0 1 0 unspecified
CONTRIBUTING FACTOR VEHICLE 4 CONTRIBUTING FACTOR VEHICLE 3 COLLISION_ID VEHICLE TYPE CODE 1 VEHICLE TYPE CODE 2 VEHICLE TYPE CODE 3 VEHICLE TYPE CODE 4
026403 Taxi

VEHICLE TYPE CODE 5

> print.table(print(Motor_vehicle_collisions_crashes[52586, 1))
"CRASH DATE® "CRASH TIME ™ BOROUGH “ZIP CODE™ LATITUDE LONGITUDE LOCATION "ON STREET NAME® "CROSS STREET _° "OFF STREET NA.~ "NUMBER OF PER.~ 'NUMBER OF PER.® "NUMBER OF PED." "NUMBER OF PED. “NUMBER OF CYC.~ “NUMBER OF CYC
01/28/2021 10:10 NA NA 40.9 -73.9 (40.866.. EAST KINGSBRIDG.. NA NA NA 0 0 0 1 0
CRASH DATE CRASH TIME BOROUGH ZIP CODE LATITUDE LONGITUDE
01/28/2021 36600 40.8666 -73.89545
LOCATION ON STREET NAME CROSS STREET NAME OFF STREET NAME NUMBER OF PERSONS INJURED NUMBER OF PERSONS KILLED
(40.8666, -73.895454) EAST KINGSBRIDGE ROAD 0
NUMBER OF PEDESTRIANS INJURED NUMBER OF PEDESTRIANS KILLED NUMBER OF CYCLIST INJURED NUMEER OF CYCLIST KILLED NUMBER OF MOTORIST INJURED NUMBER OF MOTORIST KILLED
0 0 1 [o 0
CONTRIBUTING FACTOR VEHICLE 1 CONTRIBUTING FACTOR VEHICLE 2 CONTRIBUTING FACTOR VEHICLE 3 CONTRIBUTING FACTOR VEHICLE 4 CONTRIBUTING FACTOR VEHICLE 5 COLLISTON_ID
priver Inattention/Distraction unspecified 4387369
VEHICLE TYPE CODE 1 VEHICLE TYPE CODE 2 VEHICLE TYPE CODE 3 VEHICLE TYPE CODE 4 VEHICLE TYPE CODE 5
station wagon/sport utility vehicle Bike

What is interesting about these is in both cases there is someone listed as injured in the
categories of Motorist, Pedestrian or Cyclist, yet the number of people injured is n/a. I am unsure
why this is but this happens such a negligible amount of times in my data set I feel comfortable
removing these entries without sacrificing any of the dataset’s integrity.

Third, there is “Contributing Factor vehicle 17 that has 5667 n/a values. This is much
larger than 13 and 31, yet it is still a very low number when compared to the overall data set the
size of ~1,9 million. It is also a very important feature as it gives the reasoning to the crash from
which a lot of contextual information about what common causes there may be for crashes. As
such, I also feel comfortable removing those 5667 entries when performing my eventual
analysis.

Forth we look at the contributing factor values for vehicles 2 to 5 and vehicle type codes
for 2 to 5 they scale up. This is because crashes tend to involve not too many cars, so you can see
the n/a values get larger as we add more vehicles to crash. If there are 5 vehicles however we do
not want to lose this information so we do not make any changes based on the high proportions
of n/a values in this field.

Lastly, we have the labels that correspond to the location of the crash: Borough, Zip
Code, Longitude, Latitude and Latitude. Borough and Zip Code appear to be somewhat
correlated with Borough having 589361 entries and Zipcode having 589630, we need to check
the correlation to be sure but both having such a close number of missing n/a values seems
convincing, especially as Borough and Zip Code are intrinsically linked as Boroughs tend to
have common Zip Codes. Longitude and Latitude are coordinates that are then put together to

9

form the location. This seems to be why they all have the exact same number of n/a values being
220620. Now the interesting thing here is Borough and Zip Code could technically be derived
from Longitude and Latitude. So if I desired I could update the data with the Borough and Zip
Code when it is missing. Despite the location being important unless I am specifically doing
analysis which relies on location, I see no reason to remove those entries, especially as it is a
decent proportion of the total data set.

5. Checking Label distributions

First let us check the distribution of times. There are ~1.9 million data points so plotting
them all is not feasible, a box plot allows us to analyse the distribution of the data clearly.

00:00:00 10:00:00 20:00:00
Time

The Boxplot shows a median average value of ~14:00 or 2 pm, and the vast majority in
the times from ~10:00 to ~18:00. This is interesting as I thought it may correlate with the rush
hour which tends to be earlier, however, this also makes sense as this is the range of time where
the most people are awake and possibly as there is less traffic more potential for speeding and
accidents. Regardless, it is good to understand how time is distributed so we can account for any
bias we may see when doing analysis with time.

10

We will now analyse the distribution of the number of people Killed and Injured.

1e+05-

=
E]
S 1e+03-
T+l -
0 10 20 30 40
Mator_Vehicle_Collisions_Crashes[["NUMBER OF PERSONS INJURED"]
T1e+05-
€
3
[=3
O 1e+03-
: I I .

2 4 6 8
Motor_Vehicle_Collisions_Crashes[['NUMBER OF PERSONS KILLED"]]

11

As one may expect we see that we have an exponential drop-off as the number of people
injured or killed increases. It is more clear in the number of injured people as the range of the
number of people injured is much greater. That is also an expected trend, people tend to be
injured more than killed and that meets the expectation. What I find very surprising is how many
people can be injured at once. There is a significant number of crashes where more than 20
people were injured which I did not expect as I personally have never heard of these situations
and would be interested to see if there are common reasons that lead to these large numbers of
injured drivers and civilians. Overall the distribution appears to be fine and no clear outliers
seem present. As with the previous data analysed it is good to get an understanding of how it is
distributed so that when performing future analysis I can understand the biases.

There is also an analysis of the reasons for each driver who got into the crash. The dataset
includes reasons for up to 5 drivers and the causes that lead them to the crash.

=

1e+05-

18+03 -

- II

count

o
g
= @ g g © & =§\a

F & EEFE 2 5§ F o2 # &5 S e =

§ 4 S PSS EFFEpEiESF

&, s S 2FEF I LY T8 g & &
- S ELETEeFfs S0 L7 &2
$ ST TS TS S FEfr eSS

S48 58 E ¢ 2

§E s §FTFIFETFESS

3 & & P & £ & &

Motor_Vehicle_Coliisions_Crashes[["CONTRIBUTING FACTOR VEHICLE 1']]
1e+05-

1+03 -

B IIIII|IIII‘|IIII

count

&

Motor_Vehicle_Coliisions_Crashes[["CONTRIBUTING FACTOR VEHICLE 2']

%
e,
I

1e+05-
3 1e+03-
1e+01-

€
5

[["CONTRIBUTING FACTOR VEHICLE 3"

Motor_Vehicle_Collisions_Crashes]

1e+05 -

Jun

8 1ew03-

[["CONTRIBUTING FACTOR VEHICLE 4]

Motor_Vehicle_Collisions_Crashes]

un

T
09

{['"CONTRIBUTING FACTOR VEHICLE 5]

Motor_Vehicle_Collisions_Crashes]

13

So here we have the factors for up to 5 vehicles in the crash. The most obvious trend is
that the number of N/A entries increases with each vehicle i.e. vehicle 1 has a lot fewer N/A
entries than vehicle 5. To be expected crashes with fewer vehicles involved are more common.
This does however highlight to me that this data set has no value that specifically highlights how
many vehicles were actually involved, which could be a good comparison point with this
contributing factor data. The way that causes are distributed between each vehicle seems mostly
similar just less quantity in each category when you move on to each successive vehicle. It is
unclear from viewing this distribution whether there is any relationship between the reasons for
each vehicle and further analysis will be needed to determine whether there is any.

For analysing location I created a scatterplot to show where the coordinates were mostly

clustered.
|:|— L]

i o
£
6 50 - -
z
O
i
E -,
@ Ll
g . -
O,-100-
w
o
L=l
w
I
O
q_;l
=
< -150-
>|
g
(=]
=

200 - 5

0 10 20 0 40

Motor_Vehicle_Collisions_Crashes[["LATITUDE"]]

Now most points you can see are clustered around Lattitude 41 and Longitude -75. This
area is New York City. There seem to be a lot of outliers that are well out of the bounds of a
crash dataset for NYC. These outliers are made even clearer when we analyse the box plots for
each.

14

20
Motor_Vehicle_Collisions_Crashes{["LATITUDE"]]

-100
Motor_Vehicle_Collisions_Crashes[['LONGITUDE"]]

We see the vast majority of the points are in a tiny sliver of the data set and there are
quite a few outliers as seen in both box plots. Therefore it seems as if it will be important to
remove all these outliers. I will find these outliers later in this EDA.

Lastly, we will check the vehicle codes. Now there is a slight issue with graphing this as
for Vehicle Type code 1 there are 1388 unique categories and for Vehicle type code 2 there are
1538 unique categories and Vehicle Type code 3 has 219, all too many to plot in a single bar
chart so we will skip over these. From looking at what charts it created it wasn't imbalanced so
we will skip it.

15

df = data.frame(Time = motor_vehicle_collisions_crashes[["CRASH TIME"]],

= length{unique(Motor_vehicle_collisions_Crashes[["VEHICLE

[1] 1388

> Tength{unique(Motor_vehicle_collisions_Crashes[["VEHICLE

[1] 1536

= Tength{unique(Motor_vehicle_collisions_Crashes[["VEHICLE

[1] 219

= length{unique(Motor_vehicle_collisions_Crashes[["VEHICLE

[1] 89

> Tength{unique(Motor_vehicle_collisions_Crashes[["VEHICLE

[1] 59

Below is the code to carry out all these plots:

p <- ggplot(df, aes(x=Time)) + geom_boxplot()

+ geom_bar ()

+ geom_bar ()}

+

+

+

+

ID = Motor_vehicle_collisions_crashes[["coLLISION_ID"]])

"11)) + geom_bar ()

geom_bar ()

geom_bar ()

geom_bar ()

geom_bar ()

+ scale_y_loglo()

+ scale_y_loglo()

scale_y_logl0

scale_y_loglo

scale_y_logl0o

scale_y_loglo

scale_y_loglo

print(p)

df = data.frame(Injured = Motor_vehicle_collisions_cCrashes[["NUMBER OF PERSONS INJURED"]], ID = Motor_vehicle_collisions_crashes[["cOLLISION_ID"]])
q <- ggplot(Motor_vehicle_collisions_cCrashes, aes(Motor_vehicle_cCollisions_cCrashes[["NUMBER OF PERSONS INJURED"]]))
print(q)

r <- ggplot(Motor_vehicle_collisions_crashes, aes(Motor_vehicle_collisions_crashes[["NUMEER OF PERSONS KILLED"]]1))
print(r)

5 <- ggplot(Motor_vehicle_collisions_crashes, aes(Motor_vehicle_collisions_Crashes[["CONTRIBUTING FACTOR VEHICLE 1'
print(s)

n <- ggplot(Motor_vehicle_collisions_cCrashes, aes(Motor_vehicle_cCollisions_Crashes[["CONTRIBUTING FACTOR VEHICLE 2"]1))
print(n)

1 <- ggplot(Motor_vehicle_collisions_crashes, aes(Motor_vehicle_collisions_Crashes[["CONTRIBUTING FACTOR VEHICLE 3"11))
print(1)

m <- ggplot(Motor_vehicle_Collisions_Crashes, aes(Motor_vehicle_cCollisions_cCrashes[["CONTRIBUTING FACTOR VEHICLE 47]1))
print(m)

h <- ggplot(Motor_vehicle_collisions_crashes, aes(Motor_vehicle_collisions_crashes[["CONTRIBUTING FACTOR VEHICLE 5"]1]))
print(h)

n <- ggplot(Motor_vehicle_collisions_crashes,

print(n)

b <- ggplot(Motor_vehicle_collisions_crashes, aes(x=Motor_vehicle_collisions_cCrashes[["LATITUDE"]])) + geom_boxplot()
print(b)

¢ =- ggplot(Motor_vehicle_collisions_crashes, aes(x=Motor_vehicle_collisions_crashes[["LONGITUDE"]])) + geom_boxplot()
print(c)

6. Checking for duplicates

TYPE

TYPE

TYPE

TYPE

TYPE

() + theme(.
() + theme(.
() + theme(.
() + theme(.

() + theme(

CODE

CODE

CODE

CODE

CODE

axis.text.

axis.text.

axis.text.

axis.text.

axis.text.

X

X

X

X

x

1°11))
2"11))
3°110)
4"11))
57110

= element_text(

= element_text

= element_text

= element_text

= element_text

aes (x=Motor_vehicle_collisions_Crashes[["LATITUDE"]], y-Motor_vehicle_collisions_Crashes[["LONGITUDE"]])}) + geom_point(aes())

I next just wanted to check if there were any duplicate rows. There actually were none

which is convenient for me.

- dup11caienﬂw5 <- which{duplicated(Motor_vehicle_Collisions_Crashes))

= print{duplicaterows)

integer(0)

7. EDA Conclusion

I have achieved a few clear objectives here in my EDA. The first is ensuring my data can

16

be adequately loaded and that there actually is enough data present for me to run a successful
analysis. The second is I have been able to analyse and recognise what data can and should be
removed through various factors, whether due to an abundance of n/a values or outliers in the

angle=65,

(angle=65,

(angle=65,

(angle=653,

(angle=65,

vjust=0.6))

vijust=0.6))

2

vjust=0.6))

vijust=0.6))

2

vjust=0.6))

specific sets of data. The third is I have gained a strong understanding of my data, what trends
are already clearly visible in the distribution of the labels and allowing me to understand any bias
that may arise from my future analysis.

I have also come to realise my data is mostly categorical with not many continuous
values. The only continuous values are location. The rest is categorical, this is important to
realise when picking the best analysis techniques for my data.

8. Objective

I have decided that my objective is to see based on all other data whether I can find the
primary reasoning behind the crash, so the reasoning of the first vehicle is listed. If we can
accurately predict the reasoning behind the crash based on all other predictors that would
accurately demonstrate that location, time, date and number of people injured or killed can
predict what accident occurred, allowing for possible changes to make to prevent such accidents.

9. Removing the unneeded variables

Before I begin my analyse I must remove the entries I have deemed unnecessary or
unimportant to the data from the EDA. These variables include.

Entries with n/a values for the number of people injured
Entries with n/a values for the number of people killed

Entries with n/a values for the Contributing Factor of vehicle 1
Entries with n/a values for the Longitude and Latitude
Outliers from location

As mentioned in the EDA it may be worth removing the 220620 entries with n/a values
for longitude and latitude if I wish to do location analyses. I think this overall is worth the
tradeoff and as I have ~1.9 million entries it isn’t that big a dent regardless.

However, when going through the variables I decided to veer slightly from my original
conclusions in the EDA and also remove the entries with n/a values for

e Borough
e Zip Code

17

This still provides us with 1273640 entries which are still over a million. I considered
removing n/a values for on-street name and cross-street name but then I realised that sometimes
there just might not be an on-street or cross-street and realised that would skew the data

Next is removing the outliers in the longitude and latitude. Based on the EDA we can see
where the vast majority of data lies.

0.4-

0.0-

4- ; 1 !
405 406 407
LATITUDE

0.4-

00-

0.4-

-7»‘1 0
LONGITUDE

Above you can see, especially when compared with the earlier boxplots that we have a
very reasonable range now.

With that our data is now ready and adequately pruned and we are left with 1270990
entries still, which is more than enough for our analysis.

18

I am also going to remove a lot of the columns. The first one is removing all the location
values that are not Longitude and Latitude. They all essentially say the same thing, it can all be
deduced from the Longitude and Latitude so we can remove Zip Code, Borough, Off Street
name, Cross Street name, On Street Name. Next, we will remove the fields for whether
Motorists, Pedestrians and Cyclists specifically are killed or injured. Though there could be
something to be gleaned from this information, my EDA showed they do not always line up with
the total injured and killed and will add unneeded complexity to the analysis. Lastly, I will
remove the Vehicle codes and all the Contributing factors other than the first. This way we can
treat the primary reason as the contributing factor to vehicle 1 and proceed from there. This also
again reduces complexity as we need fewer dimensions to run our algorithms. I did try running it
with the full dataset and it wouldn’t let me as a 955GB vector would have to be created which R
would not allow because of the immense size.

#remove uneeded columns
MVCC = subset(MvCC, select = -c{COLLISION_ID, LOCATION, “NUMBER OF PEDESTRIANS INJURED", 'NUMBER OF PEDESTRIANS KILLED®,
"NUMBER OF CYCLIST INJURED, NUMBER OF CYCLIST KILLED , 'NUMBER OF MOTORIST INJURED ,
"NUMBER OF MOTORIST KILLED , BOROUGH, “ZIP CODE’, "ON STREET NAME , "CROSS STREET NAME ,
TOFF STREET NAME , CONTRIBUTING FACTOR VEHICLE 27, "CONTRIBUTING FACTOR VEHICLE 37, "CONTRIBUTING FACTOR VEHICLE 47,

"CONTRIBUTING FACTOR VEHICLE 5°, "VEHICLE TYPE CODE 2°, "VEHICLE TYPE CODE 3°, "VEHICLE TYPE CODE 4°, "VEHICLE TYPE CODE 5))

n/a values
= subsetr(MvcC, MVCCSLATITUDE '= "nfa’)
= subset(MvCc, MVCCI NUMBER OF PERSONS INJURED™ != 'n/a’)
= subset(MvCC, MVCCS NUMBER OF PERSONS KILLED '= 'n/a’)
= subset(MVCC, MVCCI CONTRIBUTING FACTOR VEHICLE 17 != "n/a’)

#remove gutliers

MVCC = subset(MvCC, MVCCILATITUDE > 40.5)
dim(Mvcc)

MVCC = subset(MvCC, MVCCSLATITUDE < 41)
dim(MvCC)

MVCC = subset(MVCC, MVCCILONGITUDE > -74.3)
dim(mvcc)

MvCC = subset(MvCcC, MVCCELONGITUDE < -73.5)
dim(Mvcc)

Above is the code used for all described above. It is slightly less as I removed columns for some
values I determined it was okay to remove n/a values for.

10. Making Categorical Variables numerical

As seen in this analysis we have an abundance of categorical variables, some of which
are not numeric. We need to convert these to numerical values to run our algorithms on it. To do
this we run code to get a list of all the unique values of the feature, then make the index of that
value in the list the representation of that categorical value. We do this for the ‘Contributing
factor for Vehicle 1’ and "Vehicle Type Code 1° as these are the only remaining categorical
variables. I also made NA values 0 if they were still some in the dataset.

19

#Change categorical data to numerical and make WA values 0 if left in the paTA
Facl_1ist = unique(MVCCS CONTRIBUTING FACTOR WEHICLE 1°)
» for (x in 1:length(Facl_list))} {
Facl_ind = which{MvCCE CONTRIBUTING FACTOR WEHICLE 1 == Facl_Tlist[x])
MVCC S "CONTRIBUTING FACTOR WEHICLE 1°[Facl_ind] =- x

&

MVCCS CONTRIBUTING FACTOR VEHICLE 1° [which(is.na(MVCC$ CONTRIBUTING FACTOR VEHICLE 17))] <- 0

vehl_Tist = unique(MVCCE VEHICLE TYPE CODE 17)

» for (x in 1:length{vehl_Tist)) {
vehl_ind = which(MVCCE VEHICLE TYPE CODE 1° == vehl_Tist[x])
MVCCE "VEHICLE TYPE CODE 17 [vehl_ind] <- x

-

MVCCS VEHICLE TYPE CODE 1° [which(is.na(MvCC$ VEHICLE TYPE CODE 17))] <- O

11. Time and Dates

I had to think exactly what was the best way to deal with the dates and time. They
provided separate fields and this suited the task well to keep them separate. For dates, I settled on
ordering them in a list and giving them a categorical number based on the index of the date in the
ordered list. This at least somewhat shows the passage of time with larger dates being later. For
the time I made it so that it was represented as (hour * 100) + (min*100/60). This way time is
evenly spaced in a range of 0 to 2400.

#Dealing with pates (at least make categorical with numbers given in order)
Date_list = unique(MVCCE CRASH DATE)

pDate_list_2 =- as.Date(Date_list, format = "%m/%d/ %Yy ")
pate_list_ordered <- Date_list_2[order(Date_list_2)]
Date_copy <- as.Date(MVCCE CRASH DATE S, format = "%m/%d/%y')
- for (x in 1:length(bate_list_ordered)) {
pate_ind = which(Date_copy == Date_list_ordered[x])
MVCCS CRASH DATE [Date_ind] <- x
head(MvCC)

#Time. make it (hours)

Time_Tist = unique(MVCCE CRASH TIME)

time_copy <- MWVCCE CRASH TIME®

MVCCS "CRASH TIME W <- as.double(MVCC% CRASH TIME)
-for (x in 1:Tength({Time_Tlist)) {

hour <- format(as.POSIXct(Time_list[x]), format = "%H")

min <- format(as.PoSIXct(Time_list[x]), format = "%M")

time_ind = which(time_copy == Time_list[x])

MVCCS CRASH TIME [time_ind] <- (100 * as.integer Chour)) + ({as.integer(min)/60)*100)
head (MvcC)

20

12. Scaling the Data

So at this point we have all our data prepped, however, it is not scaled with drastically

different values. Therefore we have to scale it so that it can work adequate well with the model.
Also when I attempted it unscaled the models wouldn’t run.

#scale the data

MVC_copy <- MWCC

MVC_copy <- as.data.frame(MvC_copy)

MVC_copy$ CRASH DATE ™ = as.numeric(MVC_copy$ CRASH TIME ™)

MVC_copySLATITUDE = as.numeric(MVC_copy3LATITUDE)

MVC_copySLONGITUDE = as.numeric(MvVC_copy3$LONGITUDE)

MVC_copy$ NUMBER OF PERSONS INJURED = as.numeric(MvC_copyi NUMBER OF PERSONS INJURED)
MVC_copy$ NUMBER OF PERSONS KILLED = as.numeric(MvC_copy$ NUMBER OF PERSONS KILLED)
MVC_copy$ CONTRIBUTING FACTOR VEHICLE 1° = as.numeric(MVC_copy$ CONTRIBUTING FACTOR VEHICLE 1)
MVC_copy$ WEHICLE TYPE CODE 1° = as.numeric(MvC_copy3 VEHICLE TYPE CODE 1°)

MVC_copy <- scale(MvVC_copy)

MVC_copy <- as.data.frame(MvC_copy)

class(MvC_copy)

13. Splitting into training data and test data

Next to do our Machine Learning Analysis we need to split the data into the training set
and test set. The training set is used to train our model and the test set is used to check the
accuracy of the model we have produced.

Here you can see we take 80% of the data set as the training data and leave the remaining
data for the test set. The training data has 1338212 entries and the test data 334553 entries.

#splitting the data

sample_size = Tloor (0. 8*nrow(MVC_copy))

set.seed(2671)

picked = sample(seq_len(nrow(MvC_copy)),size = sample_size)
training_data =mvC_copy[picked,]

Test_data =MvC_copy[-picked,]

> dim(training_data)
[1] 1338212 g8
=~ dim(test_data)

[1] 334553 B

21

14. Linear Regression

We will begin by trying linear regression using the Im() function provided in the library
caret. Even though this isn’t required for this hw I felt seeing how it went.
model_linear <- Im(CONTRIBUTING FACTOR WEHICLE 1°~., family="binomial", data=training_data)

#Fview model summary
summary (model_1inear)

call:

Tm{formula = "CONTRIBUTING FACTOR VEHICLE 1° ~ ., data = training_data,
family = "binomial™)

Residuals:
Min 10 mMedian 30 Max

-1.4163 -0.8520 -0.4196 1.06l1l6 2.4357

coefficients: (1 not defined because of singularities)

Estimate std. Error t value Pri=|t]|)
(Intercept) 0.0004730 0.0008401 0.563 0.57345
"CRASH DATE’ -0.0023596 0.0008408 -2.806 0.00501 #**
"CRASH TIME® WA M& NA N&
LATITUDE -0.0143972 0.0008889 -16.196 < 0.0000000000000002 #=%*
LONGITUDE 0.0182272 0.0008893 20.497 < 0.0000000000000002 *#*
"MUMBER OF PERSONS INJURED ™ -0.0399976 0.0008413 -47.541 < 0.0000000000000002 s
"NUMBER OF PERSONS KILLEDS 0.0024668 0.0008463 2.915 0.00356 ==
"WEHICLE TYPE CODE 1° 0.2303883 0.0008409 273.993 < 0.0000000000000002 *#x*
signif. codes: 0 “*%*’ 0. 001 ‘**=' 0.01 “*' 0.03 *." 0.1 * " 1

Residual standard error: 0.9719 on 1338205 degrees of freedom
Multiple R-squared: 0©.05556, Adjusted R-squared: 0.05556
F-statistic: 1.312e+04 on & and 1338205 DF, p-value: < 0.00000000000000022

Things of note here. Pr(>t) essentially shows how useful a variable is in relation to what
we are trying to predict, in this case, “Contributing Factor Vehiclel’ They all are very low
showing little to no relationship apparently. The largest is for Crash Date yet even then it is still
very low. Next, is the number of people killed, which makes sense as it is most likely a good
predictor of the severity of the crash. We then create a confusion matrix and check the
misclassification rate.

> tab_1in =- table(result_lin, test_data$ CONTRIBUTING FACTOR VEHICLE 17)
=1 - sum{diag(tab_T1in)}) / sum(tab_1in)
[1] 1

The model misclassifies 100% of the time which is obviously not good. My reasoning as

to why is we are utilising a linear regression model. This is very likely not a linear model and
trying linear regression in it has proved detrimental.

22

15. Naive Bayes

Next I try the Naive Bayes model. I am utilising the libraries naivebayes, dplyr and
psych.
training_data$ CONTRIBUTING FACTOR VEHICLE 17 <- as.factor(training_data$ CONTRIBUTING FACTOR VEHICLE 17)
modeTNB =- naive_bayes(CONTRIBUTING FACTOR WEHICLE 1 ~., data=training_data, usekernel = T)
result_NB =- predict(modelNE, test_data)

print(result_NB)

tab_MB =<- table(result_lin, test_data’ CONTRIBUTING FACTOR VEHICLE 17)
1 - sum(diag(tab_ng)) sum{tab_nB)

conf_mat_NB = confusionMatrix(as.factor(test_dataf CONTRIBUTING FACTOR VEHICLE 1°), as.factor(result_NB))

Overall Statistics

Accuracy : 0.2783
95% CI (0.2768, 0.2798)
No Information Rate 0.6443

P-Value [Acc = NIR] |

Kappa : 0.0377

Mcnemar's Test P-Value NA

Straight away this is an improvement of having an accuracy of 0.2783 as opposed to 0 as
seen in the linear regression model. The Kappa value shows us how well our model matched
while also controlling for possible random variables. Kappa is in a range of 0 on 1, 0.0377 is a
very low value but makes sense with an accuracy of only 0.2783%. Overall this clearly better
than the linear regression model however still not great. I would say it did better because the
assumptions of the model match up better with the situation we are analysing. It being
multivariate help and allows for better accuracy. Also, it assumes that covariates are
“conditionally” independent, this may demonstrate that my covariates are independent.

Sensitivity
04 0B 08 1.0
1

02
1

00
I

10 08 06 04 02 00
Specificity

23

install. packages('proc’) # For ROC curve to evaluate model
Tibrary(proC)
test_probMBE = predict(modelNB, test_data, type = "prob")

test_rocNg = multiclass.roc(as. numeric(test_dataf CONTRIBUTING FACTOR VEHICLE 17),

as.numeric(test_rocNBiauc)

rsNg «- test_rocNB[['rocs’]]
plot.roc({rsue[[1]1]1)

sapply(2:length(rsng) ,function(i) Tines.roc(rsne[[i]],col=1))

as.numeric(result_NB))

The ROC curve quite frankly demonstrates the same trend that the model has very bad

classification abilities. We can also calculate our AUC.

> as.numeric(test_rocNBSauc)
[1] 0.5455342

It is 0.5455342, again demonstrating it has a very poor classification ability.

Sensitivity

Specificity

Pos Pred Value

Neg Pred Value

Prevalence

Detection Rate

Detection Prevalence

Balanced Accuracy 0. ¢
Class: -1.01174577051666

Sensitivity NA

Specificity 0.98459

Pos Pred Value

Neg Pred Value

Prevalence

Detection Rate

Detection Prevalence

Balanced Accuracy NA

B.2842843
B.9496693
0.0166354
0.9977479
B.0029861
b.0008489
B.0510293

b9768
37543
NA
D.94004

Class: -0.927495633758423 Class: -0.885376

Sensitivity p.29978
Specificity 0.81142
Pos Pred Value p.14935
Neg Pred Value p.91299
Prevalence P.09946
Detection Rate p.02982
Detection Prevalence B.19964
Balanced Accuracy B.55560

0.996786152
0.001857010
0.999817078
0.000188311

Class: -0.843245497000183 Class: -0.801120

Sensitivity D.091319
Specificity p.977504
Pos Pred Value

Neg Pred Value

Prevalence

Detection Rate

Detection Prevalence

Balanced Accuracy

0.000000000
0.999990807
0.000008967

579065

0.487710357

Looking at a selection of Sensitivity and Specificity we see that the sensitivity is close to
0 and the Specificity is close to ~0.97 in general. Essentially this means we can correctly identify
what the ‘Contributing Factor Vehicle 1’ was almost never and we can predict when it isn’t a
certain value 97% of the time. However, this is mostly because the model does not perform well

so it’s wrong most of the time anyway. Ideally, both should be close to 1.

24

16. Decision Tree

Next we try the decision tree model. I decided to utilise this model as my target variable
is categorical, as is the number of people killed, number of people injured and the vehicle code
of vehicle 1. As such, I felt this model may perform well. Here we are utilising the model library
rpart.

model_tree <- rpart(CONTRIBUTING FACTOR WEHICLE 17 ~., data=training_data, method = 'class’)
result_tree <- predict(model_tree, test_data, type = 'class’)
conf_mat_tree = confusionMatrix(as.factor(test_data$ CONTRIBUTING FACTOR WEHICLE 17), as.factor(result_tree))

Overall Statistics

Accuracy
95% CI
No Information Rate

P-Value [Acc = NIR]

Kappa

Mcnemar's Test P-Value : NA

The decision tree model did have the best performance as expected. It had an accuracy of
0.3482 which is the highest yet, but still not great. What is interesting is the kappa is 0 for some
reason. | am unsure exactly why that is because it clearly does predict well some of the times. It
may have to do with the decision tree model itself but I am unsure.

1.0

08
I

Sensitivity

04

0z
|

T T T T T T
1.0 0.8 0.6 0.4 02 0.0

Specificity

25

= as.numeric(test_rociauc)
[1] 0.5

Despite the higher accuracy, the ROC curve still shows poor classification and the AUC
is exactly 0.5, also showing poor classification.

: -1.0959959072749 Class: -1.085387083889578
Sensitivity NA NA
Specificity 0.97262 0.94897
Pos Pred Value NA NA
Neg Pred Value NA NA
Prevalence 0.00000 0.00000
Detection Rate 3 0.0
Detection Prevalence 0.02738 0.05103
Balanced Accuracy NA NA
: -1.01174577051666 Class: -0.96962 543
Sensitivity NA NA
Specificity 0.98459 0.94004
Pos Pred Value NA
Neg Pred Value
Prevalence
Detection Rate 0. : s ¢]
Detection Prevalence 0.0154 0.05996
Balanced Accuracy NA
: -0.927495633758423 Class: -0.8853705653
Sensitivity NA
Specificity 0.8004
Pos Pred Value NA
NA
0.0000
Detection Rate 0.0000
Detection Prevalence 0.1996
Balanced Accuracy NA
Class: -0.843245497000183 Class:
Sensitivity NA
Specificity 0.97422
Pos Pred Value NA
NA
0.00000
Detection Rate 0.00000
Detection Prevalence 0.02578
Balanced Accuracy NA NA

Looking at the Sensitivity and Speicfivty, we see a high specificity, but sensitivity is NA
for some reason. I am not sure exactly why. But overall seems to have many overlaps with Naive
Bayes but has a better accuracy overall.

17. KNN

Lastly we will try KNN. To begin I have cut down my dataset and sampled it to 500,000

entries for performance purposes. It was taking too long with the full data set so I had to make it
smaller.

#splitting the data

sample_size = fleor(0.8*nrow(rand_df))

set.seed(1231)

picked = sample(seq_len({nrow(rand_df)),size = sample_size)
smol_training_data =rand_df [picked,]

smol_test_data =rand_df [-picked,]

dim(smol_training_data)
dim(smol_test_data)

26

Now KNN tends to perform better with multi-label models therefore I had good hopes
that it would perform the best so far.

= pr <- knn{smol_training_data,smol_test_data,cl=smol_training_data$ CONTRIBUTING FACTOR VEHICLE 1 ,k=20)
= ##create the confucion matrix

> th <- talﬂE(pr‘.5m01_‘tes‘t_da.ta.5‘CONTRIBUTII\G FACTOR VEHICLE 17)

= ##check the accuracy

= accuracy <- function(x){sum{diag(x)/(sum{rowsums(x}))) * 100}

= accuracy(th)

[1] 33.856

> dim(smol_training_data)

[1] 400000 8
= dim({smol_test_data)
[1] 100000 8

Here we see the accuracy is 33.856. Still not high, actually lower than the accuracy for
the Decision Tree model.

1.0

06 08
1

Sensitivity

04

0z
|

0o

T T T T T T
1.0 0.8 0.6 0.4 0.2 0.0

Specificity

= as.numeric(test_rocfauc)
[1] 0.5

KNN keeps up the same trend of an AUC and ROC curve showing very bad
classification. Overall appears all these models share the same shortcomings.

27

18. Hw1 Conclusion

Overall, none of my models performed very well. I used progressively better-suited
models and this is seen in that the accuracy does improve at each step. It could be a possibility
that my data may not be very correlated at all and that the metrics I am picking to use do not
predict the ‘Contributing Factor for Vehicle 1’ well at all. There is a lot of consistency in what
the models are getting wrong which makes me believe the data just may not be well correlated in
general, with all having bad ROC curves and AUC values. I will see what can be improved with
further techniques in Homework 2.

19. Gradient Boosted Trees

So here I decided to try the Gradient Boosted Tree method. The Decision Tree method
had the highest accuracy so I wanted to try it with gradient boosting. Now the main issue I had
was my full dataset was too large to work so I used the smaller data set of 500,000 entries, split
into a 400,000 training set and 100,000 test set.

#Gradient Boosting trees

1nsta11.packagés(?gbm'}

Tibrary(gbm)

require(gbm)

GBTree =gbm(CONTRIBUTING FACTOR WEHICLE 1 ~ . ,data = smol_training_data,distribution = "gaussian",n.trees = 10000,
shrinkage = 0.01, interaction.depth = 4)

GBTree

summary (GBTree) #Summary giwves a table of wariable Importance and a plot of variable Importance

> summary(GBTree) #Summary gives a table of variable Importance and a plot of variable Importanc

var rel.inf
"WEHICLE TYPE CODE 1° "WEHICLE TYPE CODE 1° 68.10105076
LATITUDE LATITUDE 17.81281733
LONGITUDE LONGITUDE 11.70704083
"CRASH DATE® "CRASH DATE™ 1.36950742
"NUMBER OF PERSONS INJURED™ “NUMBER OF PERSONS INJURED ™ 0.98693460
"NUMBER OF PERSONS KILLED® "NUMBER OF PERSONS KILLED ™ 0.02264906
"CRASH TIME® "CRASH TIME ™ 0.00000000

Initially what is interesting is that we can see what variables it finds to be the most
important with the Vehicle Type being the highest. This is interesting as it shows that there may
actually be a combination between certain vehicles and the occurrence of crashes. The next to are
Latitude and Longitude. Also demonstrates that location plays an important role. The factors had
a very low impact seemingly.

28

n.trees = seq(from=100 ,t0o=10000, by=100) #no of trees-a vector of 100 values

#Generating a Prediction matrix for each Tree

predmatrix<-predict(GBTree, smol_training_data, n.trees = n.trees)

dim(predmatrix) #dimentions of the pPrediction matrix

#Calculating The Mean squared Test Error

test.error<-with(smol_training_data,apply((predmatrix- CONTRIBUTING FACTOR VEHICLE 17)A2,2,mean))
head(test.error) #contains the Mean squared test error for each of the 100 trees averaged

#Plotting the test error vs number of trees

plot(n.trees , test.error , pch=19,col="blue",xTab="Number of Trees",ylab="Test Errer”, main = "pPerfomance of Boosting on Test Set")

Perfomance of Boosting on Test Set

*
w
{D__
a
&
C:i L]
o L]
=
L
I
(=]
= *
[
L]
L)
o..
.o
®
& _ 'o.
o L)
o
h_
a

I I I I I
0 2000 4000 5000 8000

Number of Trees

29

10000

Next, we plot the test error and we see we get about as low as ~0.78. This is actually
worse than our base decision tree model, which had an accuracy of ~0.348 which is a test error
of ~0.652. So gradient boosting doesn’t make up for having more than double the data points. As
noted earlier, these techniques help when there is a lack of data, but with ~1.6 million entries my
original project was not lacking in data so this technique has made little difference. However, it
is interesting to see it come close with less than half as much data.

20. Random Forest

Now the random forest method was a technique I had a lot of hope for as it also pulls

from the Decision Tree method which proved the best. However, I came to a similar issue as with
the Gradient Boosting Trees where I just had too much data for the method to actually run,
causing me to cut my data down to 100,000 entries and having the method run with 500 trees.
This is not more than just an experiment to see if these other methods can match having much
more data.

rand_df <- mMvC_copy[sample(nrow(MvC_copy), s51ze=100000),

#5plitting the data

sample_size = floor(0.8*nrow(rand_df))

set.seed(1231)

picked = sample(seqg_len(nrow(rand_df)),size = sample_size)
smol_training_data =rand_df [picked,]

smol_test_data =rand_df [-picked,]

dim{smol_training_data)
dim{smol_test_data)

install. packages ("randomForest’)

Tibrary(randomrForest)

#Random Tree

train_copyl =- subset(smol_training_data, select = -c(CONTRIBUTING FACTOR VEHICLE 17))
train_copy2 <- smol_training_data® CONTRIBUTING FACTOR VEHICLE 17;

classifier_RF = randomForest(x = train_copyl, y = train_copy2, ntree = 500) #was 500

Get variable importance from the model fit
ImpData =- as.data.frame(importance(classifier_RF))
ImpData$var.Names <- row.names(ImpData)

ggplot(ImpData, aes(x=var.Names, y="IncNodePurity)) +
geom_segment (aes(x=Vvar.Names, xend=var.mNames, y=0, yend="IncNodePurity), color="skyblue™) +
geom_point(aes(size = IncNodePurity), color="blue”, alpha=0.6) +
theme_Tlight() +
coord_f1ip() +
theme(
Tegend. position="bottom”
panel.grid.major.y = element_blank(),
panel. border = element_blank(),
axis.ticks.y = element_blank()

plot(classifier_RF)

30

VEHICLE TYPE CODE 1 .

NUMBER OF PERSONS KILLED

NUMBER OF PERSONS INJURED .
w0
3
£
s LONGITUDE ®
©
>
LATITUDE @
CRASH TIME L
CRASH DATE @
0 5000 10000
IncNodePurity
IncNodePurity ® soo0 @ 10000
classifier_RF

5 -
]

[s2}

g

@

@

T T T T T T
0 100 200 300 400 500
frees
call:

randomForest(x = train_copyl, y = train_copy2, ntree = 500)
Type of random forest: regression
Number of trees: 500
Mo. of variables tried at each split: 2

Mean of squared residuals: 0.803011
% var explained: 19.58

Few things to note from this experience. The first main one is that the test error is still
worse than the decision tree. At 500 Trees we are at ~0.8 error whereas the Decision tree had a
test error of ~0.652. Looking at the node purity we see that VehicleType Code 1 is the purest by
far with Longitude and Latitude next, then crash date and crash time. I will say that I didn’t
expect the number of people killed and injured to be the least. When I began this experiment I
assumed the number of people injured or killed would be one of the clearest indications of what

31

may cause a crash or the reasons that lead to it, so it is interesting to see every other node is
purer. After the Vehicle itself, we still see how the next important thing is the location itself,
showing certain locations may be more prone to certain crashes. It could be an interesting further
study to see if you can predict location based on all other factors. We see the % var explained is
19.58. This is essentially the accuracy of the model, showing that it has a very poor accuracy as
seen in the test error as well. If anything has been clear from these experiments, more data seems
to beat out these techniques by far, which makes sense. These techniques improve your results on
the current data set. If [could run these models on my full data set [am sure they may provide
better results, though as you get more data it will most likely have diminishing returns.

21.10-fold Cross Validation and Linear Regression

In all honesty I doubt cross-validation will do much to my accuracy for one main reason,
my data set is already massive. For Linear Regression, Naive Bayes and Decision Tree method
my training set had 1338212 entries, which is over a million. However, for the sake of
experimentation, I will test whether cross-validation can improve the abysmal performance of
Linear Regression from my first one. We do this using the Caret Library.

"repeatedcv”,
10, repeats = 3)

train_control =- trainControl{method
number

model =- train(CONTRIBUTING FACTOR WEHICLE 1° -~., data = training_data,
method = "Im",
trControl = train_control)

print(model)

Linear Regression

samples
predictor

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 3 times)

Summary of sample sizes: 1204389, 1204392, 1204390, 1204392, 1204390, 1204390,
Resampling results:

RMSE Rsquared MAE
0.9718959 0.05556024 0.8968479

Tuning parameter '1intercept' was held constant at a value of TRUE

results =- predict(model, test_data)
tab <- table(results, test_data? CONTRIBUTING FACTOR VEHICLE 17)
1 - sum(diag(tab)) sum(tahb)

32

> 1 - sum(diag(tab)) / sum(tab)

1

Here we try 10-fold cross-validation on the full training set which is 1338212 entries. We
see pretty much the same results however with the original linear regression where the model
misclassifies 100% of the time which is obviously not ideal.

22. Bias and Variance in Cross Validation

Let us analyse how bias and variance in the Cross Validation method. Here we utilised
the k-fold cross validation method, specifically for k=10. This means that we split our data into
10 subsets. We then train the model using 9 of the subsets and using the remaining subset for the
validation and testing. This means every data point is used to train k-1 times and used to validate
1 time. This reduces bias every data point is being used for training and reduces variance as all
the data is also being used to validate the methods. Of course, there is always a bias-variance
trade-off, but it is effective at getting both as small as possible. However, I feel as if my project
demonstrated this is a great method for when you have less data, but when you have an
abundance of data these techniques may be superfluous.

23. Homework 2 Conclusion

Overall, I have found that none of these methods has given me better results than in hwl
and for good reason. My data set was massive, to begin with, and to allow for most of these
methods to run without R-Studio crashing or the IBM machine timing out I had to cut down the
data I was using. However, Gradient Boosting and Random Forest did relatively well given how
much less of the data they were given and therefore showed promise, however, did not make up
for the difference in the number of entries. Analysis of the data set showed that the best predictor
was in fact type of vehicle or vehicle code, even if the best accuracy I could get was ~30%. This
could demonstrate that there is at least some correlation between certain vehicles and crashes.
Next was the location, showing that there may be some locations that could be problem points.
Again though we have such a low accuracy I can’t say any of this with confidence. This may be
showing that there is a more random element to crashes that can not be predicted with the given
data and show that we may need other data points.

33

24. Future Work and What I have learned

As brought up, it could be interesting to see if we can predict other things any better, such

as crash location or vehicle type. However, I do feel as if overall the data set I picked might not
have been the best for this type of project. It met the requirements set, but with mostly
categorical data, features of low value with mostly n/a values and more it proved problematic. I
wanted to explore something I found interesting but overall I learned how important the quality
of data is. Furthermore, how to prep data, run the models and analyse the results were invaluable
skills I learned, as well as coding in R, which was more intuitive than I at first expected.

25. References

https://www.guru99.com/r-decision-trees.html
http://r—statistics.co/TopSO—GgplotZ—Visualizations—MasterList—R—Code.html#Histo,qram

https: r-bl m/2021/04/naive-baves-classification-in-r,
https://www. tutorlalsp_omt com/r/r_linear regressmn htm

atr1x%201n%2OR,W111%20represent%20the%2Oactual%20value
https://rviews.rstudio. com/2019/03/01/s0me r-packages -for-roc- curves/

https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply
-explained-knn-112c88da405¢

https://datascienceplus.com/gradient-boosting-in-1/

https://hackernoon.com/random-forest-regression-in-r-code-and-interpretation

https://www.geeksforgeeks.org/random-forest-approach-in-r-programming/#:~:text=Rand
om%20Forest%20in%20R %20Programming.when%20employved%200n%20its%200wn.

https://www.geeksforgeeks.org/cross-validation-in-r-programming/

ext=This%?20significantly%20reduces%20bias%?20as.being%20used%20in%20validation
%20set.

34

https://www.guru99.com/r-decision-trees.html
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#Histogram
https://www.r-bloggers.com/2021/04/naive-bayes-classification-in-r/
https://www.tutorialspoint.com/r/r_linear_regression.htm
https://www.journaldev.com/46732/confusion-matrix-in-r#:~:text=A%20confusion%20matrix%20in%20R,will%20represent%20the%20actual%20values
https://www.journaldev.com/46732/confusion-matrix-in-r#:~:text=A%20confusion%20matrix%20in%20R,will%20represent%20the%20actual%20values
https://rviews.rstudio.com/2019/03/01/some-r-packages-for-roc-curves/
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply-explained-knn-1f2c88da405c
https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples-in-r-simply-explained-knn-1f2c88da405c
https://datascienceplus.com/gradient-boosting-in-r/
https://hackernoon.com/random-forest-regression-in-r-code-and-interpretation
https://www.geeksforgeeks.org/random-forest-approach-in-r-programming/#:~:text=Random%20Forest%20in%20R%20Programming,when%20employed%20on%20its%20own
https://www.geeksforgeeks.org/random-forest-approach-in-r-programming/#:~:text=Random%20Forest%20in%20R%20Programming,when%20employed%20on%20its%20own
https://www.geeksforgeeks.org/cross-validation-in-r-programming/
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f#:~:text=This%20significantly%20reduces%20bias%20as,being%20used%20in%20validation%20set
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f#:~:text=This%20significantly%20reduces%20bias%20as,being%20used%20in%20validation%20set
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f#:~:text=This%20significantly%20reduces%20bias%20as,being%20used%20in%20validation%20set

